Sorkin Lab
PUBLICATIONS
An updated list can be found on Google Scholar:
2024
[33]. Biophysical Aspects of Migrasome Organelle Formation and their Diverse Cellular Functions, Dharan R., Sorkin R., BioEssays, (2024), https://doi.org/10.1002/bies.202400051
[32]. Tetraspanin proteins in membrane remodeling processes, Dharan R., Sorkin R., Journal of Cell Science, J Cell Sci (2024) 137 (14): jcs261532, (2024) https://doi.org/10.1242/jcs.261532,
[31]. Extracellular domain 2 of TSPAN4 governs its functions, Dharan R., Vaknin A., Sorkin R., Biophysical Reports, 4 (2), 100149, 2024, (2024) (Featured on the cover and highlighted in a blog post of the BPS: https://www.biophysics.org/blog/tetraspanins-navigating-membrane-landscapes).
[30]. Micro-tensile rheology of fibrous gels quantifies strain-dependent anisotropy, Goren S., Ergaz B., Barak D., Sorkin R., Lesman A., Acta Biomaterialia https://doi.org/10.1016/j.actbio.2024.03.028
[29]. Ebola Virus Glycoprotein Strongly Binds to Membranes in the Absence of Receptor Engagement, Vaknin A., Grossman A., Durham N. D, Lupovitz I., Goren S., Golani G., Roichman Y., Munro J.B., Sorkin R., ACS Infectious Diseases 10 (5), 1590-1601 (2024), (featured on supplementary cover) https://doi.org/10.1021/acsinfecdis.3c00622
2023
[28]. Viscoelastic phenotyping of red blood cells, Gironella-Torrent M., Bergamaschi G., Sorkin R., Wuite G. J. L., Ritort F., Biophysical Journal (2023), DOI:https://doi.org/10.1016/j.bpj.2024.01.019
[27]. Membrane Tension Inhibits Lipid Mixing by Increasing the Hemifusion Stalk Energy, Shendrik P., Golani G., Dharan R., Schwarz U. S., and Sorkin R., ACS Nano, 17, 19, 18942–18951, (2023), https://doi.org/10.1021/acsnano.3c04293
[26]. Effect of cholesterol on the mechanical stability of gel-phase phospholipid bilayers studied by AFM force spectroscopy, Mielke S., Sorkin R.#, Klein J.#, The European Physical Journal E 46 (9), 77, (2023), https://doi.org/10.1140/epje/s10189-023-00338-y
[25]. Tetraspanin 4 stabilizes membrane swellings and facilitates their maturation into migrasomes, Dharan, R., Huang Y., Cheppali S. K., Goren S., Shendrik P., Wang W., Kozlov M. M., Yu L., and Sorkin R., Nature Communications, 14, 1037, (2023), https://doi.org/10.1038/s41467-023-36596-9
2022
[24]. Probing local force propagation in tensed fibrous gels, Goren S., Levin M., Brand G., Lesman A*., and Sorkin R*., Small, 2202573, (2022) (*-corresponding authors), https://doi.org/10.1002/smll.202202573
[23]. Supported Natural Membranes on Microspheres for Protein–Protein Interaction Studies, Cheppali S. K., Dharan R., Katzenelson R., Sorkin R., ACS Appl. Mater. Interfaces (2022), https://doi.org/10.1021/acsami.2c13095
[22]. Transmembrane Proteins Tetraspanin 4 and CD9 Sense Membrane Curvature, Dharan, R.; Goren, S.; Cheppali, S. K.; Shendrik, P.; Brand, G.; Vaknin, A.; Yu, L.; Kozlov, M. M.; Sorkin, R. Proc. Natl. Acad. Sci. (2022), 119,43, e2208993119, https://doi.org/10.1073/pnas.2208993119
[21]. Forces of Change: Optical Tweezers in Membrane Remodeling Studies, Cheppali S. K., Dharan R. and Sorkin R., Journal of Membrane Biology, (2022), https://doi.org/10.1007/s00232-022-00241-1
Before TAU
[20]. 20S proteasomes secreted by the malaria parasite promote its growth, Dekel E., Yaffe D., Rosenhek-Goldian I., Ben-Nissan G., Ofir-Birin Y., Morandi M. I, Ziv T., Sisquella X., Pimentel M. A, Nebl T., Kapp E., Ohana Daniel Y., Abou Karam P., Alfandari D., Rotkopf R., Malihi S., Block Temin T., Mullick, D. Revach O.-Y., Rudik A., Gov N. S, Azuri I., Porat Z., Bergamaschi G., Sorkin R., Wuite G. JL, Avinoam O., Carvalho T. G, Cohen S. R, Sharon M., Regev-Rudzki N., Nature Communications 1172 (2021)
[19]. Kinetics of actin networks formation measured by time resolved particle-tracking microrheology, Levin M., Sorkin R., Pine D., Granek R., Bernheim-Groswasser A., Roichman Y., Soft matter, 16 (33), 7869-7876, (2020)
[18]. Live cell single molecule tracking and localization microscopy of bioorthogonally
labeled plasma membrane proteins, König A.I.#, Sorkin R.#, Alon A.,Nachmias D., Dhara K., Brand G., Yifrach O., Roichman Y., Arbely E., Elia N., Nanoscale, (2019) (#- equal contribution)
[17]. Synaptotagmin-1 and Doc2b exhibit distinct membrane remodeling mechanisms, Sorkin R., Marchetti M., Logtenberg E., Kerklingh E., Brand G., Voleti R., Roos W. H., Rizo J., Groffen A. J. & Wuite G. J. L., Biophysical Journal, (2019), 118(3), 643-656,
[16]. The fluid membrane determines mechanics of erythrocyte extracellular vesicles and is softened in hereditary spherocytosis, Vorselen D., Van Dommelen S. M., Sorkin R., Piontek M.C, Schiller J., Dopp S.T., Kooijmans S.A.A., van Oirschot B. A., Versluijs B. A., Bierings M. B., van Wijk R., Schiffelers R.M., Wuite G. J. L. and Roos W. H., Nature Communications (2018) 9(1):4960,
[15]. Nanomechanics of extracellular vesicles reveals vesiculation pathways, Sorkin R.*,
Huisjes R., Bošković F., Vorselen D., Pignatelli S., Ofir-Birin Y., Freitas Leal J. K., Schiller J., Roos W. H., Bosman G., Regev-Rudzki N., Schiffelers R. M., Wuite G. J. L.*, Small, (2018) 1801650 (*- corresponding authors.)
[14]. Probing cellular mechanics with Acoustic Force Spectroscopy, Sorkin R.#*,
Bergamaschi G#., Kamsma D., Brand G., Dekel E., Ofir-Birin Y., Gironella M., Ritort F., Regev-Rudzki N., Roos W. H. & Wuite G. J. L.*, Molecular Biology of the Cell, (2018) doi: 10.1091/mbc (*- corresponding authors. #- equal contribution.)
[13]. Supported Planar Mammalian Membranes as Models of in Vivo Cell Surface Architectures, Liu H-Y., Grant H., Hsu H-L, Sorkin R., Bošković F.; Wuite, G.J.L.; Daniel S., ACS Applied Materials & Interfaces, (2017), 9 (41), pp 35526–35538. IF 8, Materials Science, Multidisciplinary 26 of 285, Q1, Nanoscience & Nanotechnology 15 of 92, Q1, No of Citations: 31
[12]. Effect of cholesterol on the stability and lubrication efficiency of Phosphatidylcholine surface layers, Sorkin R.*, Kampf N. and Klein J.* Langmuir (2017), 33 (30), pp 7459–7467 (*- corresponding authors.)
[11]. The effect of the serum corona on interactions between a single nano-object and a living cell, Dror Y., Sorkin R., Brand G., Boubriak O., Urban J., Klein J., Nature Scientific Reports, (2017), Doi: 10.1038/srep45758
[10]. Hydration lubrication and shear-induced self-healing of lipid bilayer boundary lubricants in phosphatidylcholine dispersions, Sorkin R., Kampf N., Zhu L. and Klein J., Soft Matter, (2016) ,12, 2773-2784
[9]. Mechanical stability and lubrication by phosphatidylcholine boundary layers in the vesicular and in the extended lamellar phases, Sorkin R., Dror Y., Kampf N., Klein J., Langmuir, (2014). Doi: 10.1021/la500420u
[8]. Boundary lubrication by macromolecular layers and its relevance to synovial joints. Seror J*., Sorkin R* ., & Klein, J. Polymers for Advanced Technologies, (2014). Doi: 10.1002/pat.3295 (*- corresponding authors)
[7]. Origins of extreme boundary lubrication by phosphatidylcholine liposomes, Sorkin R., Kampf N., Dror Y., Shimoni E., Klein J., Biomaterials, 34, (2013), 5465-5475 IF:9.3, Engineering, Biomedical 1 of 78 Q1, Materials Science, Biomaterials: 1 of 33 Q1, No of Citations: 87
[6]. Hydration lubrication: exploring a new paradigm, Gaisinskaya A#., Ma L.#, Silbert G.#, Sorkin R.#, Tairy O.#, Goldberg R., Kampf N. and Klein J., Faraday Discussions, 156 (Tribology), (2012), 217-233 (#-equal contribution).
[5]. Process entanglement as a neuronal anchorage mechanism to rough surfaces, Sorkin R., Greenbaum A., Pur M. D., Anava S., Ayali A., Ben Jacob E. and Hanein Y., Nanotechnology, 20, 1 (2009),015101
[4]. Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays, Shein M., Greenbaum A., Gabay T., Sorkin R., Pur M. D, Ben Jacob E. and Hanein Y., Biomedical Microdevices, 11, 2 (2009), 495-501
[3]. Electro-chemical and biological properties of carbon nanotube based multi-electrode arrays, Gabay T., Pur M. D, Kalifa I., Sorkin R., Abrams Z. R., Ben- Jacob E., Hanein Y ., Nanotechnology, 18, 3 (2007) 035201,
[2]. Compact self-wiring in cultured neural networks, Sorkin R., Gabay T., Blinder P., Baranes D., Ben Jacob E. and Hanein Y., Journal of Neural Engineering, 3, 2 (2006), 95-101.
[1]. Evaluation of prefractionation methods as a preparatory step for multidimensional based chromatography of serum proteins, Barnea E., Sorkin R., Ziv T., Beer I., Admon A., Proteomics, 5, 13 (2005), 3367-3375.